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ABSTRACT
The constant frame length in typical ASR front ends is too long to
capture transient phenomena in speech, such as stop bursts. How-
ever, current HMM systems have consistently outperformed sys-
tems based solely on non-uniform units. This work investigates
an approach to “add back” such transient information to a speech
recognizer, without losing the robustness of the standard acoustic
models. We demonstrate a set of phonetically-motivated acoustic
features that discriminate a preliminary test set of highly ambigu-
ous voiceless stops in CV contexts. The features are automatically
computed from data that had been hand-marked for consonant burst
location and voicing onset (extension to automatic marking is also
proposed). Two corpora are processed using a parallel set of fea-
tures: conversational speech over the telephone (Switchboard), and
a corpus of carefully elicited speech. The latter provides an upper
bound on discrimination, and allows for comparison of feature us-
age across speaking style. We explore data-driven approaches to
obtaining variable-length time-localized features compatible with
an HMM statistical framework. We also suggest techniques for ex-
tension to automatic annotation of burst location, for computation
of features at such points, and for augmentation of an HMM system
with the added information.

1. INTRODUCTION
Modeling of speech with hidden Markov models (HMMs) implies a
constant rate of information accumulation. Frames of a fixed length
are scored uniformly to compute the likelihood that a given utter-
ance is produced by the model. The common fixed frame length
of�25 ms is the time-frequency trade-off in the speech representa-
tion. It is well known that such a frame length is too long for cap-
turing information-bearing transient phenomena which may have
durations as short as a couple of milliseconds. At the same time,
stationary segments, such as vowels, have constant spectral charac-
teristics for much longer regions, on the order of 100 ms. These
observations motivate exploring techniques that can provide vari-
able temporal resolution depending on the type of event. This work
explores data-driven approaches to such front end adaptation for use
within the standard HMM framework.

Approaches based on non-uniform frame lengths have been ex-�A longer version of this work appears in the Proceedings of the NIST
Speech Transcription Workshop, College Park, MD, 2000.

plored in numerous previous studies. For example, beginning
in the 1970s, knowledge-based approaches to speech recognition
developed classification systems based on acoustic-phonetic rules
[12, 13, 4]. An advantage of such approaches was that the acoustic
characteristics for phone discrimination were not limited in resolu-
tion. However, performance did not reach that of HMM-based sys-
tems using less sophisticated information and a fixed frame length.
More recently, segment-based systems [5, 8, 1] address the prob-
lem of a constant frame length by representing phone segments us-
ing a single feature vector—regardless of segment duration. This
approach allows for the use of heterogeneous, phone-class-specific
features that focus on phonetically relevant information for discrim-
inating among the confusable sounds within a phone class [7, 10].
In spite of these advantages, however, segment-based systems alone
have not been able to outperform state-of-the-art HMM-based sys-
tems.

This work aims at combining the advantages of both segmental and
HMM systems, by using the HMM system to produce N-best hy-
potheses with phonetic segmentations. Based on the HMM seg-
mentations, we compute additional phone-specific segment-based
features to improve the discrimination of confusable phone classes.
Probability models for the additional features are trained from seg-
mentations of training data. For recognition, probability scores for
each recognition hypothesis in the N-best list are combined with
standard HMM likelihood scores. We demonstrate a set of linguisti-
cally motivated features, based on non-uniform front-end extraction
units, that successfully discriminate a preliminary test set of voice-
less consonants in consonant-vowel (CV) contexts. The features are
automatically computed from an extraction region carefully hand-
marked by a linguist for burst location. The annotations and feature
extraction are applied to two parallel databases: (1) spontaneous-
conversational speech from the Switchboard corpus [6] and (2) a
corpus of carefully-elicited speech [9]. Inclusion of the latter cor-
pus provides an upper bound on discrimination, and allows us to
examine differences in speech style and channel quality while fea-
ture definition and extraction is held constant in the parallel corpora.
We propose techniques for automatic location of such points in the
waveform, computation of features at such points, and augmenta-
tion of an HMM system with such information.

The paper is organized as follows: In Section 2, we describe the
phone classification task and the database. Features are introduced
in Section 3, and the resulting statistics from the proposed features
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on the elicited and spontaneous speech databases are detailed in
Section 4. Section 5 describes the decision tree classification of
the stops in vocalic contexts via the set of proposed features. Fi-
nally, the approaches are discussed from the perspective of auto-
matic speech recognition in Section 6.

2. TASK AND DATABASE
As a first, tractable task in this work, we chose the classification of
voiceless unaspirated stops (/p/, /t/, and /k/) in a CV context. We
also included /ch/ for comparison purposes. Acoustic information
relevant to the identification of stops resides in formant transitions,
duration of closure and release of the stop burst, and also in more
transient phenomena such as the shape of the spectrum at the burst
and the presence or absence of multiple bursts [11]. In certain vo-
calic contexts, for example, preceding the high front vowel, /i/, long
term cues may be neutralized, resulting in a dependenceon the tran-
sient phenomena for the identification of stops, and a corresponding
increase in confusion rates for both humans and machines [9]. The
set of voiceless stops in CV tokens presents a challenge to auto-
matic processing approaches that average transient information of
stops over many frames, and thus proves to be a good starting point
for localized feature modeling.

3. FEATURES OF A CV TOKEN
For the purposes of this cross-corpus study, we considered the fol-
lowing subset of acoustic features known to be important cues in
the identification of stop place [11]: (1) voice onset time (VOT), (2)
multiplicity of bursts, and (3) gross shape of burst spectrum. VOT
is the duration of time the vocal cords take to begin periodic vibra-
tion after the release of a consonant. The predicted order of VOT
averages, derived from their articulation and manner, for voiceless
stops and the affricate /ch/ are: /p/, /t/, /k/, /ch/.

Figure 1 shows the distribution of VOT and multiplicity of bursts
for elicited and spontaneous speech. The bar graphs represent val-
ues averaged over all speakers and all vocalic contexts. VOT, as
predicted, is a strong function of stop identity for both elicited and
spontaneous speech. Multiplicity of bursts, however, serves as a
useful discriminant only for the elicited database, as the articulation
of stops in spontaneous speech may have a faster release overall,
and thus velar stops may be less prone to the phenomena of multi-
ple bursts.

The constriction of the articulation of a voiceless stop and its re-
lease generate distinctive spectral characteristics at the burst that
are somewhat invariant across different vocalic contexts. Stop burst
spectra for labials (/p/), alveolars, (/t/), and velars (/k/) have been de-
scribed as “diffuse-falling” (majority of energy in the low frequency
region), “diffuse-rising” (majority of energy in the high frequency
region), and “compact” (peak of energy in the mid frequency re-
gion) [2]. Figures 2, 3 and 4 show examples of the spectrum at
the burst, as well as linear and piecewise linear fits to the spectrum,
for /pa/, /ta/, and /ka/, respectively. Derived features include the
slopes of the linear and piecewise linear fits, the mean squared error
of the fits, and the location in the frequency range of the node for
the piecewise linear fit. The last feature is particularly helpful for
distinguishing /t/ from /k/ bursts.
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Figure 1: Comparison of average VOT and average number of
bursts for elicited and spontaneousspeech. Values are averaged over
speakers and over vocalic context.
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Figure 2: Spectrum, linear, and piecewise linear fits for /pa/. The
“diffuse-falling” shape of the spectrum is captured by the negative
slope of the linear fits. Note that the node lies below 2000 Hz.

4. DECISION TREES
In this section we describe the analysis and visualization of the pro-
posed set of features via decision trees. For the classification prob-
lem over the set (/p/, /t/, /k/, /ch/), we train CART-style decision
trees, as in Figure 5. In Table 1, we show the classification perfor-
mance of the decision tree on a test set for elicited speech. The cor-
responding performance summary on spontaneous speech is given
in Table 2. The classification accuracies are around 84%.

We also rank and compare the usage of the features shown here as
well as formant transition information across elicited and sponta-

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

−5

0

5

10

15

20

25

30
/ta/ burst spectrum

frequency (Hz)

|B(
f)| 

(dB
)

Figure 3: Spectrum, linear, and piecewise linear fits for /ta/. The
“diffuse-rising” shape of the spectrum is captured by the positive
slope of the linear fits. Note that the node lies above 4000 Hz.
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Figure 4: Spectrum, linear, and piecewise linear fits for /ka/. The
prominent peak of the spectrum is captured by a high mean squared
error of the linear fit and by the mid-frequency location (2000–4000
Hz) of the fitted node.

Elicited speech database, accuracy = 84.11% (905/1076)
P T K CH TOTAL CORR

P 243 16 9 1 269 243
T 37 180 49 3 269 180
K 12 37 213 7 269 213

CH 0 0 0 269 269 269

Table 1: Decision tree classification of stops in vocalic contexts for
elicited speech.

neous databases. Table 3 shows the frequency of usage of features
in tree classification. VOT is the most prominent feature on both
elicited and spontaneous databases. The tree in Figure 5 shows
that VOT is especially helpful in classifying /ch/ and /p/. Burst
multiplicity, as previously mentioned, is only useful in the elicited
database, where it is used to classify velars from other stops. The
tree also contains information on formant transitions into the fol-
lowing vowel, which is found to be useful in both databases; here it
picks out labials (which have characteristically low formant onsets
at the release of the burst) from other stops. The node frequency of
the piecewise linear fit is also a consistently used feature in both the
elicited and spontaneous databases; here it functions to distinguish
velars from alveolars.

5. ASR PERSPECTIVE
We have shown that hand-labeled acoustic events, some of which
are temporally localized, provide features with rich information
content for the classification of easily confused phones. Here, we
discuss the issues in extending such an approach to ASR systems.
The focus is on automatic location of information-bearing points in
the waveform and statistical extraction of localized features. An-
other fundamental question is the determination of the best way to
augment or modify current HMM systems to use such information.

Spontaneous speech, accuracy = 83.57% (234/280)
P T K CH TOTAL CORR

P 61 6 3 0 70 61
T 12 51 6 1 70 51
K 8 2 52 8 70 52

CH 0 0 0 70 70 70

Table 2: Decision tree classification of stops in vocalic contexts for
spontaneous speech.

Elicited speech Spontaneous speech
feature usage

VOT 0.57
f2 0.19

number of bursts 0.13
burst node freq 0.10

f2 slope 0.01

feature usage

VOT 0.54
f2 slope 0.29

f2 0.12
burst node freq 0.05

number of bursts 0.00

Table 3: Decision tree usage of features.
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Figure 6: Adaptive frame length analysis by the best basis algo-
rithm.

As an important example of the signal processing issues involved,
we demonstrate automatic localization of the voicing onset.

We have made use of the best basis algorithm [3] in segment-
ing transient and stationary speech segments by an adaptive frame
length front end. In this framework, automatic voicing onset lo-
cation is carried out by temporal segmentation into varying-length
frames depending on the stationarity of the underlying signal seg-
ment (Figure 6). This type of front-end processing may also be
suitable for burst localization.

Finally, we discuss possible ways of augmenting an HMM system
with localized features. One straightforward way of augmentation
is via N-best list rescoring from alignments as shown in Figure 7.
The CV context is bracketed by alignments; subsequently, the fea-
tures obtained from the CV are scored and used as an additional
knowledge source in rescoring of the N-best list.

6. SUMMARY AND FUTURE WORK
This work has explored data-driven approaches to temporal front
end adaptation. We have carried out statistical extraction and char-
acterization of useful time-localized features obtained from data
hand-labeled for relevant events. Such work constitutes a first step
toward demonstrating the discrimination power of localized features
on a classification task, for both careful and spontaneous speech.
We have also discussed signal processing techniques to automate
the accurate localization of information-bearing events, and possi-
ble methods of augmentation or modification of current HMM sys-
tems to use localized features as side information.
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